

New 45° general purpose milling series

Extremely versatile, high performance, high quality, and long tool life milling

Delivers the "low cutting force" benefits of positive inserts and the "fracture resistance" benefits of negative inserts, and provides excellent surface finish

Wide variety of machining applications, including steel, stainless steel, cast iron, aluminum alloys, and heat-resistant alloys

New 45° general purpose milling series

MB45

Provides high quality and high performance machining solutions with long tool life Delivers the "low cutting force" benefits of positive inserts and the "fracture resistance" benefits of negative inserts, and provides excellent surface finish

Extreme versatility

General-purpose milling cutters require a balance between high-quality, high-performance, long tool life, economy, and versatility to be able to tackle a wide variety of machining applications.

Pursue all of these qualities without compromising with the MB45. These next-generation cutters will last, whether you are running general machining applications, or finding valuable new machining solutions.

ISO Standard SEKN Type (No breaker)

Positive (Single-sided) Type

Advantage

Low cutting force

Excellent finished surface and machining accuracy

Negative (Double-sided) Type

Advantage

Excellent fracture resistance Economical with multiple cutting edges

Evolving to standardize new technology

04 MB45

Delivers the "low cutting force" benefits of positive inserts and the "fracture resistance" benefits of negative inserts

High Quality	High quality results and excellent surface finish
	 Lineup of E class inserts Long arc wiper edge Back coolant hole
High Performance	Unique design with high performance, low cutting force and fracture resistance
	• Double edge structure and helical cutting edge (A.R. max + 13°)
Long Tool Life	Next-generation PVD coating for milling PR18 Series
	 Double lamination technology maintains longer tool life Double-sided 8-corner design reduces tool costs
Solution	Find new value with excellent versatility
	 Roughing and finishing with E class inserts
	• For a wide variety of machining applications: Small machines (BT30, etc.) with ø 40 mm cutter
	• For a variety of workpieces: Cost-cutting with multiple cutting edges for aluminum machining

• Gain excellent surface finish with Cermet inserts (TN620M)

3.0

20

1.0

0

0.1

0.3

Feed per tooth fz (mm/t)

0.2

0.4

0.5

"Versatility" + "Quality": Large insert lineup supports a wide variety of machining applications

Five types of inserts for various machining applications Economical inserts with 8 cutting edges General purpose GM insert with E-Class and M-Class options based on required machining accuracy

0.6

3.0

20

1.0

0

0.1

0.2

0.3

Feed per tooth fz (mm/t)

0.4

0.5

0.6

When to use GM (Class E/M)

Selection by machining application

Surface roughness oriented: GM (E-Class) Cost-effective and surface finish oriented: GM (M-Class)

Criteria	GM (E-Class)	GM (M-Class)
Tolerance	Inscribed circle tolerance ± 0.013 mm	Inscribed circle tolerance ± 0.05 mm
Surface finish	applicable — Approx. 1.6µmRa	applicable = Approx. 3.2µmRa
(Gloss)	2nd choice	1st choice
Machining efficiency	applicable	applicable
Economy	applicable	applicable

*Surface finish is based on internal assessment and varies depending on the machining environment

Solution

Tool integration for roughing and finishing with E-Class insert

"Versatility" + "Long tool life": 7 insert grades covering steel, stainless steel, cast iron, heat-resistant alloys to aluminum alloy machining

For steel, stainless steel and cast iron

PR1825/PR1835/PR1810 New development MEGACOAT NANO EX

For stainless steel and heat-resistant alloys

CA6535 CVD coating

For steel | Surface finish oriented

TN620M Cermet

2

For aluminum machining

PDL025 DLC coating GW25 Non-coated carbide

Next-generation PVD coating for milling

PR18 Series

Kyocera's nano layer coating technology. Longer tool Life with next-generation coating for milling

Double lamination technology maintains longer lool life

Multi-layer structure with two unique nano layers Superior abrasion resistance and fracture resistance

Special nano layer x Multilayer lamination

High toughness suppresses crack growth

Nano-Layer

High toughness suppresses crack growth

Altibased coating with excellent heat resistance

AlCr-based coating

with excellent abrasion resistance

Multi-layering of high-performance nano layers

Increases toughness with the suppression of crack growth and optimization of internal stress

PR1825 with PVD coating MEGACOAT NANO EX provides long tool life

Cutting edge condition (after 20 min machining)

MB45(PR1825)

Competitor A

Cutting conditions: Vc = 120 m/min, ap = 2.0 mm, ae/DC = 80 %, fz = 0.20 mm/t, Dry Workpiece: SKD11, ø125 BT50

Solution Utilizing Cermet TN620M

Cermet (TN620M) for efficient finishing

Cutting conditions: ap \times ae = 0.5 \times 100 mm fz = 0.15 mm/t, Dry Workpiece: S50C, ø125 (10 inserts), GM (TN620M)

6

"Versatility" + "High Performance": New design utilizes unique technology. Low cutting force and excellent fracture resistance with excellent surface finish

Low cutting force and excellent fracture resistance

A unique helical cutting edge

A.R. Ensures a maximum of 13° and suppresses chatter with low cutting force.

Double edge structure

Primary cutting edge generates thin chips, reduces impact load and greatly reduces vibration when exiting the part.

Unique helical cutting edge and double-edge structure

Cutting resistance comparison (Internal evaluation)

Cutting conditions: Vc = 180 m/min, ap = 3.0 mm, ae/DC = 80 % Center Cut, fz = 0.30 mm/t, Workpiece: S50C

Fracture resistance comparison (Internal evaluation) fz = 0.5~0.8 mm/t

Cutting conditions: Vc = 100 m/min, ap \times ae = 2 \times 100 mm Center Cut, BT50 Workpiece: SCM440HT ø125 (10 inserts)

Surface roughness comparison (Internal evaluation)

Cutting conditions: ap = 1.0 mm, ap \times ae = 1 \times 100 mm (Center Cut), fz = 0.20 mm/t, Dry Workpiece: S50C ø125 (6 inserts/10 inserts) GM (PR1825) BT50

Finishing surface quality comparison (Image)

MB45

Long arc wiper edge

Smooth finished surface with small feed joints

Workpiec

Finishing surface condition (Vc = 250 m/min)

Proprietary long arc wiper edge provides excellent finishing surface quality

General insert

Straight wiper edge

The feed joint is large and the finished surface is stepped.

Vorkpiece

Solution Unique back coolant structure delivers excellent finished surface.

Smooth chip evacuation reduces scratches and chip clogging on finished surfaces. Reliably supplies coolant to the cutting edge. Internal coolant allows for even higher quality surface finish.

Toolholder Lineup

Coarse pitch	Fine pitch	Extra fine pitch	Shank type
Recommended for workpieces or machines with low rigidity (such as sheet machining or BT30) Economical	<u>1st recommendation</u> Good balance of stability, machining accuracy and efficiency Supports a wide range of machining areas	Recommended for high rigid workpiece and machine	Compatible with milling chucks (face mill recommended basically) *Shank size: ø32
Cutting diameter ø40 to ø315 *ø315: Made to order	Cutting diameter ø40 to ø315 *ø315: Made to order	Cutting diameter Ø40 to Ø250	Cutting diameter Ø40 to Ø80

Compatible with smaller machines

Lineup of coarse pitch ø40 Works well on small machines such as BT30

Recommendation for small machines: Low cutting force SM Cutting resistance is about 10% less than general-purpose GM

Cutting conditions: Vc = 150 m/min, ap = 1.0 mm, ae/Dc = 80 %, Dry, BT50 Workpiece: S50C

Case studies Excellent performance even under unstable machining conditions

(User evaluation)

Case studies Achieves 1.6x longer tool life under the same machining conditions

ы.			Recommended insert grade (Vc: m/min)										
break	Workpiece	Feed fz (mm/t)		PVD co MEGACOAT NANO EX	oating	MEGACOAT HARD	CVD coating	Cermet	DLC coating	Carbide			
Ŀ,			PR1835	PR1825	PR1810	PR015S	CA6535	TN620M	PDL025	GW25			
	Carbon steel	0.1 - 0.2 - 0.4 (0.06 - 0.12 - 0.20)	が 120 - 180 - 250	★ 120 - 180 - 250	-	-	-	★ 200 - 250 - 300	-	-			
	Alloy steel	0.1 - 0.2 - 0.4 (0.06 - 0.12 - 0.20)	が 100 – 160 – 220	★ 100 - 160 - 220	_	-	-	★ 180 - 220 - 250	-	-			
	Mold steel	0.1 - 0.2 - 0.35 (0.06 - 0.08 - 0.15)	50 - 140 - 180	★ 80 - 140 - 180	-	-	-	★ 150 - 180 - 220	-	-			
	Austenitic stainless steel	0.1 – 0.2 – 0.4	☆ 100 – 160 – 200	☆ 100 – 160 – 200	-	-	-	-	-	-			
ieneral GM	Martensitic stainless steel	0.1 – 0.2 – 0.4	が 150 – 200 – 250	-	-	-	が 180- 240 -300	-	-	-			
	Precipitation hardening stainless steel	0.1 – 0.2 – 0.3	★ 90 - 120 - 150	-	-	-	-	-	-	-			
	Gray cast iron	0.1 – 0.2 – 0.4	-	-	★ 120 - 180 - 250	-	-	-	-	-			
	Ductile cast iron	0.1 – 0.2 – 0.35	-	-	★ 100 – 150 – 200	-	-	-	-	-			
	Ni-based heat resistant alloys	0.1 – 0.12 – 0.2	☆ 20 – 30 – 50	-	-	-	★ 20 - 30 - 50	-	-	-			
	Carbon Steel	0.06 - 0.12 - 0.25	☆ 120 – 180 – 250	☆ 120 – 180 – 250	-	-	-	-	-	-			
	Alloy Steel	0.06 - 0.12 - 0.25	₩ 100 - 160 - 220	₩ 100 - 160 - 220	-	-	-	-	-	-			
	Mold steel	0.06 - 0.1 - 0.2	80 - 140 - 180	80 - 140 - 180	-	-	-	-	-	-			
	Austenitic stainless steel	0.06 - 0.12 - 0.25	★ 100 - 160 - 200	00 100 - 160 - 200 -		-	-	-	-	-			
ig force SM	Martensitic stainless steel	0.06 - 0.12 - 0.25	☆ 150 – 200 – 250	-	-	-	★ 180 - 240 - 300	-	-	-			
Low cuttin	Precipitation hardening stainless steel	0.06 - 0.12 - 0.25	90 – 120 – 150	-	-	-	-	-	-	-			
	Gray cast iron	0.06 - 0.12 - 0.25	-	-	120 – 180 – 250	-	-	-	-	-			
	Ductile cast iron	0.06 - 0.1 - 0.2	-	-	が 100 – 150 – 200	-	-	-	-	-			
	Ni-based heat resistant alloys	0.06 - 0.1 - 0.15	20 – 30 – 50	-	-	-	20 – 30 – 50	-	-	-			
	Titanium alloy	0.06 - 0.08 - 0.15	★ 40 - 60 - 80	-	-	-	-	-	-	-			
	Carbon Steel	0.2 – 0.3 – 0.5	120 – 180 – 250	120 – 180 – 250	-	-	-	-	-	-			
	Alloy Steel	0.2 – 0.3 – 0.5	100 - 160 - 220	120 - 160 - 220	-	-	-	-	-	-			
	Mold steel	0.2 - 0.3 - 0.45	始 – 140 – 180	80 - 140 - 180	-	-	-	-	-	-			
	Austenitic stainless steel	0.2 – 0.3 – 0.4	100 – 160 – 200	が 100 – 160 – 200	-	-	-	-	-	-			
edge GH	Martensitic stainless steel	0.2 - 0.3 - 0.4	150 - 200 - 250	-	-	-	180 - 240 - 300	-	-	-			
Tough	Precipitation hardening stainless steel	0.2 – 0.3 – 0.4	90 – 120 – 150	-	-	-	-	-	-	-			
	Gray cast iron	0.2 – 0.3 – 0.5	-	-	120 – 180 – 250	-	-	-	-	-			
	Ductile cast iron	0.2 – 0.3 – 0.45	-	-	100 – 150 – 200	-	-	-	-	-			
	Ni-based heat resistant alloys	0.1 – 0.2 – 0.3	20 – 30 – 50	-	-	-	20 – 30 – 50	-	-	-			
	Hardened material (40 HRC or less)	0.05 - 0.1 - 0.2	-	-	-	★ 50- 80 -100	-	-	-	-			
AM	Aluminum alloy	0.1 – 0.2 – 0.4	-	-	-	-	-	-	★ 200 - 600 - 900	☆ 200 – 500 – 800			

The number **in bold font** is **recommended starting conditions**. Adjust the cutting speed and the feed rate within the above conditions according to the actual machining situation. Machining with coolant is recommended for Ni-based heat resistant alloy and titanium alloy. When choosing wet machining for other workpieces, reduce the cutting speed to 70% or less. When machining aluminum, be sure to use within recommended conditions. Do not rotate more than the maximum speed listed on the main unit. Dry machining is recommended for cermet.

Applicable inserts

Usage classification	Р	Steel Mold steel						*	☆						
		Austanitis stainlass staal						★	ਮ -				-		
		Martancitic stainlass steel						×	×			-			
+: Roughing/1st recommendation	IVI	Martensitic stainless stee	21						ਸ •			×			
- Roughing/ Indrecommendation		Precipitation nardening	stainies	steer					×						
Koughing/ 2nd leconniendation Finishing (1st as summer dation	к	Gray cast iron								*					
■: Finishing/ Ist recommendation		Ductile cast iron								*					
: Finishing/ 2nd recommendation	N	Nonferrous metal												*	☆
(Hardened material is 40 HRC or less)	s	Heat resistant alloys (Ni-	based h	eat resis	tant allo	oys)						*			
		Titanium alloy							*						
	Н	Hardened material									*				
Shape		Description		Dime	ensions ((mm)		MEGAC NANO E	OAT X	NEW	MEGACOAT HARD	CVD	Cermet	DLC	uncoated
			IC	S	BCH	BS	D1	PR1825	PR1835	PR1810	PR015S	CA6535	TN620M	PDL025	GW25
General purpose (M-Class)	10	SNMU1406ANER-GM	14.7	6.07	0.8	2.3	5.8	•	•	•		•	•		
Tough edge (M-Class)		SNMU1406ANER-GH	14.7	5.89	1.4	1.7	5.8	•	•	•	•	•			
General purpose (E-Class)		SNEU1406ANER-GM	14.7	6.07	0.8	2.3	5.8	•	•	•		•	•		
Low cutting force (E-Class)		SNEU 1406ANER-SM	14.7	6.07	0.8	2.3	5.8	•	•			•			
Aluminum and non-ferrous metals (E-Class)		SNEU1406ANFR-AM	14.7	6.07	0.8	2.3	5.8							•	•

•: Available

Applicable chipbreaker range

Toolholder dimensions

			llity	inserts							Dimens	sions (n	nm)						к.(°)	(,	hole	(kg)	umber of (min-1)	e
	Desc	cription	Availab	Number of	ы	DCX	DCSFMS	DCB	DCCB1	DCCB2	DCCB3	DCCB4	DBC1	Ŀ	CBDP	KDP	KWW	APMX	A.R. ma	R.R.(°	Coolant	Weight	Maximum nu revolutions	Shap
	MB45 -	040R-14T2C-M	•	2	40	53	38	16	13.5	9					19	5.6	8.4					0.4	12,700	
		050R-14T3C-M	•	3	50	63	48	22	10	11]			40	21	6.2	10.4					0.5	11,400	Fig 1
		063R-14T4C-M	•	4	63	76	50	22	10						21	0.5	10.4				Voc	0.7	10,100	riy. i
÷		080R-14T5C-M	•	5	80	93	70	27	20	13] -	-	-	50	24	7	12.4				ies	1.4	9,000	
e pitc		100R-14T5C-M	•	5	100	113	78	32	45					50	30	8	14.4	6	12	12		1.9	8,000	Fig 2
oarse		125R-14T6C-M	•	6	125	138	89	10	55						22	0	16.4	0	CI	-12	2	3.2	7,200	riy.z
0		160R-14T7-M	•	7	160	173	110	40	55		14	20	66.7	63		,	10.4					5.1	6,300	
		200R-14T8-M	•	8	200	213	1/12		110		18	26	101.6	05							No	7.3	5,700	Fig.3
		250R-14T10-M	•	10	250	263	142	60			10	20	101.0		35	14	25.7				110	10.5	5,100	
		315R-14T14-M	MTO	14	315	328	222		-		-	-	-	80								19.4	4,500	Fig.4
	MB45 -	040R-14T3C-M	•	3	40	53	38	16	13.5	9					19	5.6	8.4					0.3	12,700	
		050R-14T4C-M	•	4	50	63	48	22 1	22 18 11	11				40	21	63	10 /					0.4	11,400	Fig 1
		063R-14T5C-M	•	5	63	76	50	~~~				_	_		21	0.5	10.4				Voc	0.6	10,100	119.1
_		080R-14T6C-M	•	6	80	93	70	27	20	13				50	24	7	12.4				105	1.4	9,000	
pitch		100R-14T8C-M	•	8	100	113	78	32	45	45 55				50	30	8	14.4	6	13	-12		1.8	8,000	Fig 2
Fine		125R-14T10C-M	•	10	125	138	89	40	55						33	9	9 16.4	Ū		12		3.0	7,200	119.2
		160R-14T12-M	•	12	160	173	110	-10			14	20	66.7	63		3 10.4					4.9	6,300		
		200R-14T14-M	•	14	200	213	142		110		18	26	101.6	05							No	7.0	5,700	Fig.3
		250R-14T16-M	•	16	250	263	1.12	60				20	101.0		35	14	25.7					10.2	5,100	
		315R-14T18-M	MTO	18	315	328	222		-		-	-	-	80								19.2	4,500	Fig.4
	MB45 -	040R-14T4C-M	•	4	40	53	38	16	13.5	9					19	5.6	8.4					0.3	12,700	
		050R-14T5C-M	•	5	50	63	48	22	18	11				40	21	6.3	10.4					0.4	11,400	Fig.1
٩		063R-14T6C-M	•	6	63	76	50				-	-	-			0.5				-12	Yes	0.6	10,100	
pitc		080R-14T8C-M	•	8	80	93	70	27	20	13				50	24	7	12.4				105	1.3	9,000	
a fine		100R-14T10C-M	•	10	100	113	78	32	45					50	30	8	14.4	6	13			1.7	8,000	Fig.2
Extra		125R-14T13C-M	•	13	125	138	89	40	55	5					33	9	16.4					2.9	7,200	
		160R-14T16-M	•	16	160	173	110	40 55 -	14	14 20	66.7	66.7			9 10.4			-13		4.8	6,300			
		200R-14T18-M	•	18	200	213	142	60	110		18	26	101.6	0.5	35	14	25.7	1			No	6.9	5,700	Fig.3
		250R-14T20-M	1 • 20	250	263	1.12				.0	20	101.0		55		25.7			-12		10.1	5,100		
Maxi	mum nu	mber of revolut	ions																		(: Available	MTO: Ma	de to order.

Maximum number of revolutions Set the number of revolutions per minute within the recommended cutting speed specified by the workpiece on page 10. Do not use the face mill or shank type at the maximum revolution or higher since the centrifugal force may cause chips and parts to scatter even under no load.

Toolholder dimensions

		A	Number of			Dimensi	ons (mm)			A.R.	D.D. (9)	Content hale	Weisht (he)	Maximum number of
De	escription	Availability	inserts	DC	DCX	DCON	LH	LF	APMX	max.(°)	K.K.(*)	Coolant noie	weight (kg)	revolutions (min-1)
MB45-	40S32-14T2C	•	2	40	53							2 Yes	0.9	12,700
	50S32-14T3C	•	3	50	63	22	40	120	<i>c</i>	12	12		1.0	11,400
	63S32-14T4C	•	4	63	76	32	40	120	0	61	-12		1.1	10,100
	80S32-14T5C	•	5	80	93							1.5	9,000	

•: Available

Maximum number of revolutions

Set the number of revolutions per minute within the recommended cutting speed specified by the workpiece on page 10. Do not use the face mill or shank type at the maximum revolution or higher since the centrifugal force may cause chips and parts to scatter even under no load.

Parts

				Pa	rts	
			Clamp screw	Wrench	Anti-seize compound	Arbor clamp bolt
Description			- A			
	MB45-	040R-14T				HH8X25
		050R-14T				HH10X30
lin I		063R-14T		TTO 20		HH10X30
Face		080R-14T	SR-201101Kh	TTP-20	P-3/	HH12X35
		100R-14T ۲		Insert clamp tightening torque 4.5 N·n	n	-
		315R-14T				
	MB45-	40S32-14T2C				
k Type		50S32-14T3C	SR_50110TRP	TTP-20	P_37	_
Shan		63S32-14T4C	20-201101AF		1-37	
		80S32-14T5C		Insert clamp tightening torque 4.5 N·n	n	

Coat anti-seize compound thinly on portion of taper and thread prior to installation.

Precautions

Applications

How to mount inserts

- 1. Completely eliminate chips and dust from the insert mounting side.
- 2. Coat anti-seize compound thinly on portion of taper and thread of clamp screw prior to installation.
- 3. After mounting a clamp screw on the top edge of wrench, tighten the screw while keeping the insert pushed against the shim seat surface and holder surface (Fig.1).
- 4. Tighten the wrench in a direction parallel to the clamp screw. Recommended tightening torque · · · 4.5 N·m
- 5. After tightening, check that there is no gap between the contact surface of the insert and the surface of the shim, or between the side surface of insert and the holder surface.

Defining the Machining Diameter (DC)

With respect to the machining diameter (DC) specified in ISO*, the numerical value of the machining diameter (Fig. 2) where the plane surface is finished depends on the insert. Please be careful.

Machining diameter at which the plane surface is finished (for ø125mm)

	GM	GH	SM	AM
Difference to machining diameter (DC)	-1.1	-2.0	-1.1	-1.1
Machining diameter (mm) at which the plane surface is finished *Dimensional tolerance ⁰ _{-0.2}	123.9	123.0	123.9	123.9

*GH has a larger double-edge size, so the machining diameter at which the plane surface is finished is smaller than other inserts.

Precautions when machining

Precautions when machining aluminum

- •Be sure to use within recommended conditions.
- •Do not rotate more than the maximum speed listed on the main unit.
 - *The number of revolutions listed on the holder is the maximum number of revolutions without load.

Precautions for wet machining of steel For wet machining, select PR1835 and use a cutting speed of 70% or less of the recommended condition as a guide.

MB45-125R-14T10C SCREW:SB-50110TRP WRENCH: MAX 7,200 RPM Rotating at maximum speed is prohibited.

