

AE-VMS

Merkmale	SEITE	4-5
Abmessungen (mit und ohne Eckenradius)	SEITE	12-13
Abmessungen RA - rechter Winkel	SEITE	14
Schnittdaten	SEITE	23-24

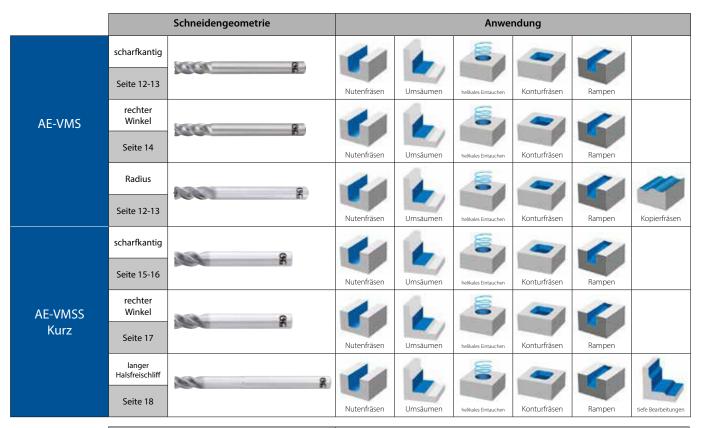
AE-VMSS Kurz

Merkmale SEITE	4-5
Abmessungen Radiustyp SEITE	15-16
Abmessungen RA - rechter Winkel SEITE	17
Abmessungen langer Hals SEITE	18
Schnittdaten SEITE	25-26

AE-VML Lang

Merkmale	SEITE	8-9
Abmessungen (mit und ohne Eckenradius)	SEITE	19
Schnittdaten	SEITE	27-28

AE-VML Spanbrecher


Abmessungen	SEITE	20
Schnittdaten	SEITE	27-28

AE-VMFE Für "tiefes Umsäumen"

MerkmaleSEITE	: 1	10
Abmessungen (mit und ohne Eckenradius)	: 2	21
BearbeitungsbeispieleSEITE		11
SchnittdatenSEITE	2	29

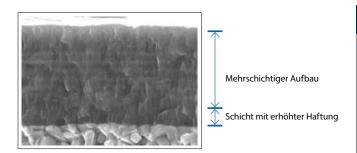
Produkterweiterung für "tiefes Umsäumen"

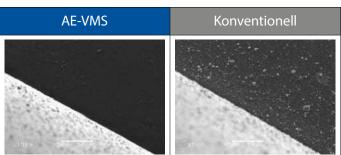
		Schneidengeometrie	Anwendung				
	scharfkantig	NECCCCO 8	Sec.	1	8	1	
	Seite 19		Trochoidal	Umsäumen	helikales Eintauchen	tiefe Bearbeitungen	
AE-VML	Radius	1000000 R	188	1	8	-	
Lang	Seite 19		Trochoidal	Umsäumen	helikales Eintauchen	tiefe Bearbeitungen	
	scharfkantig mit Span- brecher	1600000 R	and the same of th	1		1	
	Seite 20		Trochoidal	Umsäumen	helikales Eintauchen	tiefe Bearbeitungen	
	scharfkantig		385	1	8	1	
AE-VMFE	Seite 21	NEU	Trochoidal	Umsäumen	helikales Eintauchen	tiefe Bearbeitungen	
Für"tiefes" Umsäumen	Radius	8	385	1	-	-	
	Seite 21	NEU	Trochoidal	Umsäumen	helikales Eintauchen	tiefe Bearbeitungen	

Rechter Winkel für 90° Kanten

Rechter Winkel bedeutet "gerader Winkel". Die Variante "rechter Winkel" wurde so entwickelt dass am Bauteil ein exakter "rechter Winkel" auch dann entsteht wenn der Fräser mit einer Schutzfase versehen ist.

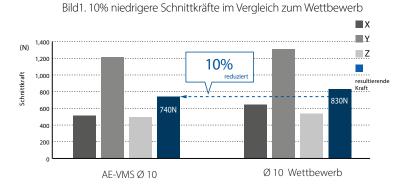
Ermöglicht das Fräsen von exakten 90° Kanten bei gleichzeitiger Schneidkantenstabilität.




MERKMALE: AE-VMS • AE-VMSS

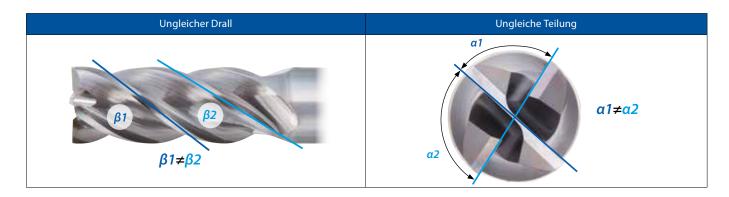
Duarise Beschichtung

Die neue Duarise Beschichtung bietet exzellente Gleiteigenschaften, geringen Reibungswiderstand und eine hohe Oxidationstemperatur. Der mehrschichtige Aufbau minimiert die Rissbildung auf Grund von Thermoschocks, die bei der Verwendung von Emulsionen auftreten können.

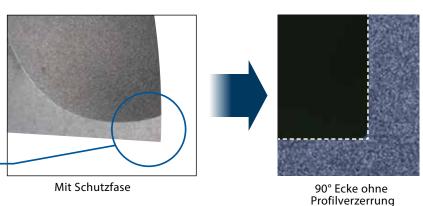

Durch das zusätzliche Glätten der Beschichtung entsteht eine exzellente Oberflächengüte.

Positiver Spanwinkel

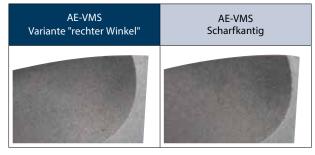
Der stabile Prozess resultiert aus reduzierten Zerspankräften durch scharfe und positive Schneidengeometrien.


Neue Nutform

Die neue Nutform mit ihrer ausgezeichneten Spanabfuhr ermöglicht prozesssicheres Fräsen mit geringer Gratbildung.

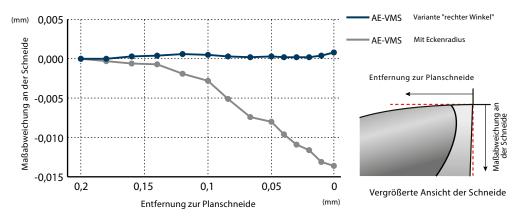

Hohe Stabilität

Die ungleiche Teilung und der ungleiche Drall ermöglichen eine stabile und hocheffiziente Bearbeitung sowie das Minimieren von Vibrationen.



Fräsen von 90° Kanten durch neu entwickelte Schneidengeometrie

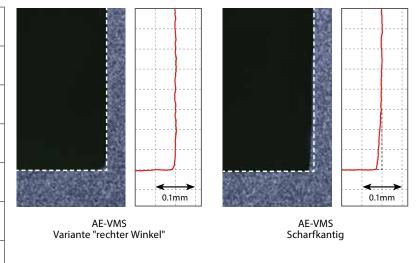
Schutzfase um Schneidkantenausbrüche zu vermeiden



Ermöglicht das Fräsen von exakten 90° Kanten bei gleichzeitiger Schneidkantenstabilität.

Die Variante "rechter Winkel" wurde so entwickelt dass am Bauteil ein exakter "rechter Winkel" auch dann entsteht wenn der Fräser mit einer Schutzfase versehen ist.

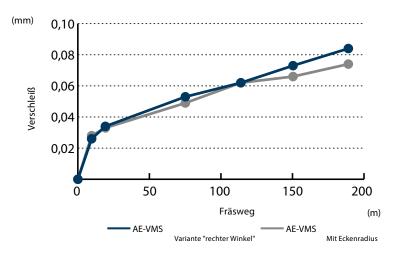
Gemessene Durchmesserabweichungen bei Schaftfräser Ø6

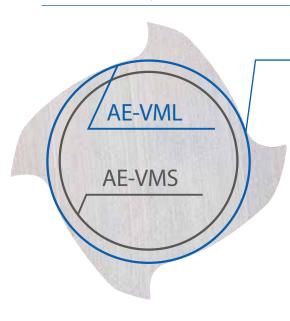


^{*} Die Daten wurden intern ermittelt und können abhängig vom Produkt variieren.

Exakte 90° Kante

Das Fräsen einer exakten 90° Kante ohne Profilverzerrung wird durch eine neue Schneidengeometrie gewährleistet


Werkzeug	AE-VMS Ø 3 - RA
Material	S50C
Fräsmethode	Umsäumen
Schnittgeschw.	Vc=91m/min (9.660min ⁻¹)
Vorschub	Vf=1.160mm/min (0,03mm/z)
Schnitttiefe	ap=4,5mm(1,5D) ae=0,6mm(0,2D)
Kühlung	Luft


Konstante Leistung / Stabile Schneiden

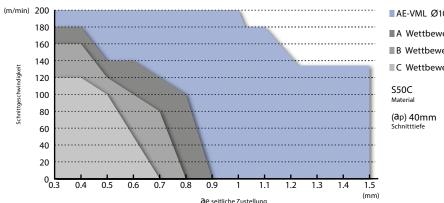
Normales Verschleißverhalten auf Grund der Schutzfase

Werkzeug	AE-VMS Ø 6 - RA	
Material	S50C	
Fräsmethode	Umsäumen	
Schnittgeschw.	Vc=130 m/min (6.900min ⁻¹)	
Vorschub	Vf=1.380mm/min (0,05mm/z)	
Schnitttiefe	ap=9mm(1,5D) ae=1,2mm(0,2D)	
Kühlung	Luft	

Hohe Stabilität

Durch den großen und stabilen Kerndurchmesser ist auch Hochgeschwindigkeitsfräsen möglich. Der konische Werkzeugkern verbessert die Steifigkeit erheblich und verringert dadurch die Abdrängung.

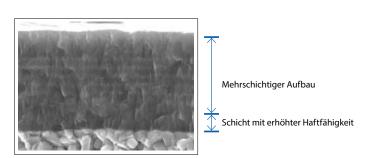
Erhöhter Drall

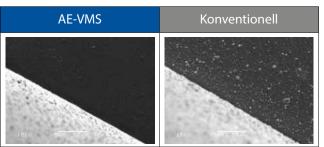

Reduziert die Schnittkräfte, um einen stabilen Fräsprozess zu ermöglichen.

Reduzieren von Vibrationen

Die Kombination aus ungleichem Drall, ungleicher Schneidenteilung und Rundschlifffase trägt zu einer stabilen Fräsleistung und hoher Effizienz bei.

Vibrationen werden auch beim Fräsen mit hohen Geschwindigkeiten und großer Tiefenzustellung stark reduziert, was zu einer deutlichen Effizienzsteigerung führt.



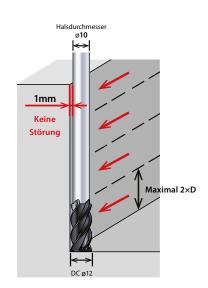


DUARISE Beschichtung

Bietet hervorragende Gleiteigenschaften, einen niedrigen Reibungswiderstand sowie eine hohe Temperaturbeständigkeit. Die Mehrlagenbeschichtung minimiert die thermische Rissbildung bei Verwendung von Emulsionen.

Durch das zusätzliche Glätten der Beschichtung entsteht eine exzellente Oberflächengüte.

Effizientes und genaues Umsäumen bei Tiefen von 5xD und mehr


2,5×D Schnitttiefe

Effizientes, tiefes Umsäumen mit großen Zeilensprüngen von 2xD und mehr*

* Die empfohlen Zustellungen sind von den jeweiligen Auskraglängen abhängig.

Lange Variante mit abgesetztem Hals

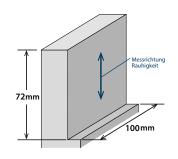
Varianten mit abgesetztem Hals sind Werkzeuge deren Außendurchmesser größer ist als der Halsdurchmesser.

DC > Halsdurchmesser

- * Für tiefes Umsäumen und Fräsen von Taschen im Formenbau.
- * Ermöglicht das Bearbeiten von unterschiedlichen Tiefen durch das Anpassen der Auskraglängen.

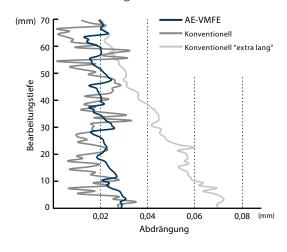
R Design an der Schaft zugewandten Seite

Verringert Absätze beim Umsäumen mit mehreren Zustellungen

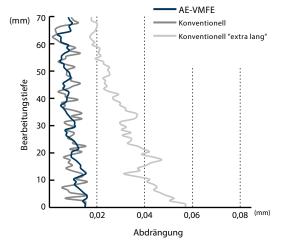

Unterdrücken von Vibrationen durch angepasste Geometrien

Hohe Effizienz - Hohe Präzision

Stabiles, tiefes Umsäumen L/D=7

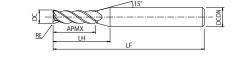

Hohe Genauigkeit bei doppelter Wirtschaftlichkeit im Vergleich zu herkömmlichen Fräsern

Werkzeug	AE-VMFE Ø 12 (L.O.C. 30mm)	Konventionell Ø 12 (L.O.C. 18mm)	Konventionell, extra lang Ø 12 (L.O.C. 90mm)	
Material	1.2344 (40HRC)			
Fräsmethode	Umsäumen in "steps" Umsäume			
Schnitt- geschwind.	120m/min (3.183min ⁻¹)	90m/min (2.387min ⁻¹)	25m/min (663min ⁻¹)	
Vorschub	1.061mm/min (0,083mm/z)	800mm/min (0,084mm/z)	132mm/min (0,05mm/z)	
Schnitttiefe	ap=18mm in 4 "steps" ap=12mm in 6 "steps" ae=0,05mm		ap=72mm ae=0,05mm	
Auskraglänge	84mm L/D=7		100mm	
Bearbeitungszeit	ca. 23 Sekunden	ca. 45 Sekunden	ca. 45 Sekunden	
Kühlung	Luft			
Maschine	vertikales BAZ (BT40)			


Genauigkeit

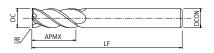
Nach Bearbeitung

AE-VMFE	Konventionell	Konventionell "extra lang"
		1 3 3 5 6 1
		34 11 2 18 18
		HEE STATE
Ra : 0,09µm	Ra : 1,45µm	Ra : 1,46µm
Rz : 1,03μm	Rz : 7,49µm	Rz : 8,07µm



AE-VMFE	Konventionell	Konventionell "extra lang"
Ra : 0,08µm	Ra : 1,07µm	Ra : 1,17µm
Rz : 0,96µm	Rz : 6,37μm	Rz : 6,99µm

Fräsen | Vollhartmetall



Typ 1

Typ 2

- Erste Wahl in Qualität und Leistung
- VHM Fräser mit Duarise Beschichtung
- Für eine Vielzahl von Anwendungen und Werkstoffen
- 4 Schneiden, ungleicher Drall und ungleiche Teilung

EDP	ZEFP	DC	RE	LF	APMX	DCON	Тур	Preis
8555830	4	3	-	60	8	6	1	
8556050	4	3	0,2	60	8	6	1	
8556060	4	3	0,5	60	8	6	1	
8555840	4	4	-	60	11	6	1	
8556070	4	4	0,2	60	11	6	1	
8556080	4	4	0,5	60	11	6	1	
8556090	4	4	1	60	11	6	1	
8555850	4	5	-	60	13	6	1	
8556100	4	5	0,2	60	13	6	1	
8556110	4	5	0,5	60	13	6	1	
8556120	4	5	1	60	13	6	1	
8555860	4	6	-	60	13	6	2	
8556130	4	6	0,3	60	13	6	2	
8556140	4	6	0,5	60	13	6	2	
8556150	4	6	1	60	13	6	2	
8555880	4	8	-	70	19	8	2	
8556160	4	8	0,3	70	19	8	2	
8556170	4	8	0,5	70	19	8	2	
8556180	4	8	1	70	19	8	2	
8556190	4	8	1,5	70	19	8	2	
8556200	4	8	2	70	19	8	2	
8555900	4	10	-	80	22	10	2	
8556210	4	10	0,3	80	22	10	2	
8556220	4	10	0,5	80	22	10	2	
8556230	4	10	1	80	22	10	2	
8556240	4	10	1,5	80	22	10	2	
8556250	4	10	2	80	22	10	2	
8556260	4	10	3	80	22	10	2	
8555920	4	12	-	90	26	12	2	
8556270	4	12	0,5	90	26	12	2	
8556280	4	12	1	90	26	12	2	
8556290	4	12	1,5	90	26	12	2	
8556300	4	12	2	90	26	12	2	
8556310	4	12	3	90	26	12	2	

AE-VMS

Fräsen | Vollhartmetall

■ Erste Wahl in Qualität und Leistung

EDP

- VHM Fräser mit Duarise Beschichtung
- Für eine Vielzahl von Anwendungen und Werkstoffen
- 4 Schneiden, ungleicher Drall und ungleiche Teilung



ZEFP

DC

RE

LF

DCON

Тур

Preis

APMX

					7		.,,,,	
8555960	4	16	-	100	32	16	2	
8557300	4	16	0,5	100	32	16	2	
8557301	4	16	1	100	32	16	2	
8557302	4	16	2	100	32	16	2	
8557303	4	16	2,5	100	32	16	2	
8557304	4	16	3	100	32	16	2	
8557305	4	16	4	100	32	16	2	
8556000	4	20	-	110	40	20	2	
8557310	4	20	0,5	110	40	20	2	
8557311	4	20	1	110	40	20	2	
8557312	4	20	2	110	40	20	2	
8557313	4	20	2,5	110	40	20	2	
8557314	4	20	3	110	40	20	2	
8557315	4	20	4	110	40	20	2	
8557316	4	20	5	110	40	20	2	
8556010	4	25	-	120	50	25	2	
8557321	4	25	1	120	50	25	2	
8557322	4	25	2	120	50	25	2	
8557324	4	25	3	120	50	25	2	
8557325	4	25	4	120	50	25	2	
8557326	4	25	5	120	50	25	2	
0337320			J	.20	30	23	_	

Fräsen | Vollhartmetall

- Erste Wahl in Qualität und Leistung
- VHM Fräser mit Duarise Beschichtung
- Für eine Vielzahl von Anwendungen und Werkstoffen
- 4 Schneiden, ungleiche Drall und ungleiche Teilung
- Rechter Winkel für 90° Ecken

EDP	ZEFP	DC	LF	APMX	LH	DCON	Тур	Preis
8555730	4	3	60	8	15,9	6	1	
8555740	4	4	60	11	17,1	6	1	
8555750	4	5	60	13	17,2	6	1	
8555760	4	6	60	13	-	6	2	

Fräsen einer exakten 90° Kante mit der Variante "rechter Winkel"

Scharfkantig

AE-VMSS,VMS

Wählen Sie Variante "rechter Winkel" für exakte Kanten

Wählen Sie "scharfkantig" für hohe Genauigkeit

Fräsen einer exakten 90° Kante ohne Profilverzerrung

Fräsen | Vollhartmetall

AE-VMSS

Fräsen | Vollhartmetall

Typ 1

- Erste Wahl in Qualität und Leistung
- VHM Fräser mit Duarise Beschichtung
- Für eine Vielzahl von Anwendungen und Werkstoffen
- 4 Schneiden, ungleiche Drall und ungleiche Teilung
- Kurze Schneide

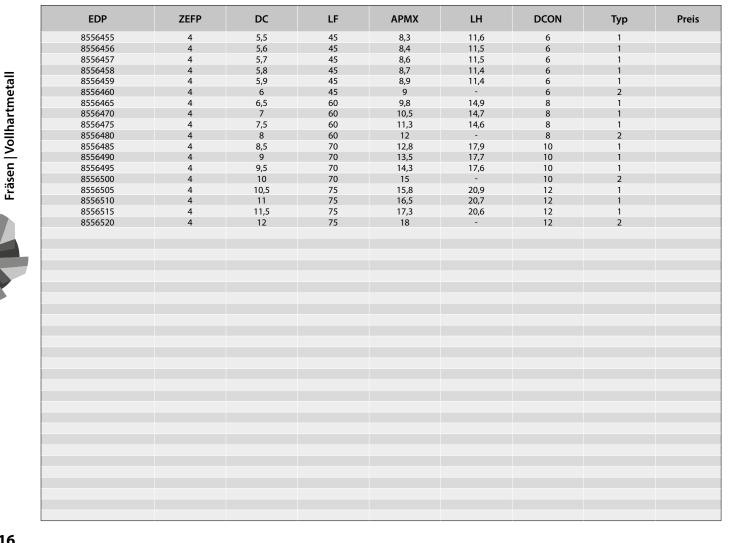
EDP	ZEFP	DC	LF	APMX	LH	DCON	Тур	Preis
8556410	4	1	40	1,5	7,9	4	1	
8556411	4	1,1	40	1,7	8	4	1	
8556412	4	1,2	40	1,8	7,9	4	1	
8556413	4	1,3	40	2	7,9	4	1	
8556414	4	1,4	40	2,1	8	4	1	
8556415	4	1,5	40	2,3	7,8	4	1	
8556416	4	1,6	40	2,4	7,9	4	1	
8556417	4	1,7	40	2,6	7,7	4	1	
8556418	4	1,8	40	2,7	7,6	4	1	
8556419	4	1,9	40	2,9	7,7	4	1	
8556420	4	2	40	3	8,2	4	1	
8556421	4	2,1	40	3,2	8,2	4	1	
8556422	4	2,2	40	3,3	8,1	4	i	
8556423	4	2,3	40	3,5	8,1	4	1	
8556424	4	2,4	40	3,6	8	4	1	
8556425	4	2,5	40	3,8	8	4	1	
8556426	4	2,5 2,6	40	3,8	8,5	4	1	
8556427	4	2,6 2,7	40	4,1	8,5	4	1	
8556428	4	2,7	40			4	1	
			40	4,2	8,4			
8556429	4	2,9		4,4	8,4	4	1	
8556430	4	3	45	4,5	12,2	6	1	
8556431	4	3,1	45	4,7	12,2	6	1	
8556432	4	3,2	45	4,8	12,2	6	1	
8556433	4	3,3	45	5	12,2	6	1	
8556434	4	3,4	45	5,1	12,1	6	1	
8556435	4	3,5	45	5,3	12,1	6	1	
8556436	4	3,6	45	5,4	12	6	1	
8556437	4	3,7	45	5,6	12	6	1	
8556438	4	3,8	45	5,7	11,9	6	1	
8556439	4	3,9	45	5,9	11,9	6	1	
8556440	4	4	45	6	11,9	6	1	
8556441	4	4,1	45	6,2	12,1	6	1	
8556442	4	4,2	45	6,3	12	6	1	
8556443	4	4,3	45	6,5	12	6	1	
8556444	4	4,4	45	6,6	11,9	6	1	
8556445	4	4,5	45	6,8	11,9	6	1	
8556446	4	4,6	45	6,9	11,8	6	1	
8556447	4	4,7	45	7,1	11,9	6	1	
8556448	4	4,8	45	7,2	11,8	6	1	
8556449	4	4,9	45	7,4	11,8	6	1	
8556450	4	5	45	7,5	11,7	6	1	
8556451	4	5,1	45	7,7	11,7	6	1	
8556452	4	5,2	45	7,8	11,6	6	1	
8556453	4	5,3	45	8	11,6	6	1	
8556454	4	5,4	45	8,1	11,5	6	1	

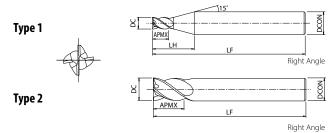
AE-VMSS

Fräsen | Vollhartmetall

DCON Typ 1 Type 2 LE

- Erste Wahl in Qualität und Leistung
- VHM Fräser mit Duarise Beschichtung
- Für eine Vielzahl von Anwendungen und Werkstoffen
- 4 Schneiden, ungleiche Drall und ungleiche Teilung
- Kurze Schneide

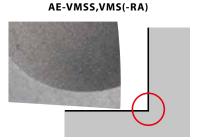




AE-VMSS RA

Fräsen | Vollhartmetall

- Erste Wahl in Qualität und Leistung
- VHM Fräser mit Duarise Beschichtung
- Für eine Vielzahl von Anwendungen und Werkstoffen
- 4 Schneiden, ungleiche Drall und ungleiche Teilung
- Kurze Schneide
- Variante "rechter Winkel"



EDP	ZEFP	DC	LF	APMX	LH	DCON	Тур	Preis
8556550	4	1	40	1,5	7,9	4	1	
8556555	4	1,5	40	2,3	7,8	4	1	
8556560	4	2	40	3	8,2	4	1	
8556565	4	2,5	40	3,8	8	4	1	
8556570	4	3	45	4,5	12,2	6	1	
8556575	4	3,5	45	5,3	12,1	6	1	
8556580	4	4	45	6	11,9	6	1	
8556585	4	4,5	45	6,8	11,9	6	1	
8556590	4	5	45	7,5	11,7	6	1	
8556595	4	5,5	45	8,3	11,6	6	1	
8556600	4	6	45	9	_	6	2	

Fräsen einer exakten 90° Kante mit der Variante "rechter Winkel

Variante "rechter Winkel"

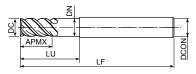
Scharfkantig

AE-VMSS,VMS

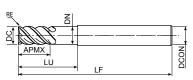
Wählen Sie Variante "rechter Winkel" für exakte Kanten

Wählen Sie "scharfkantig" für hohe Genauigkeit

Fräsen einer exakten 90° Ecke ohne Profilverzerrung

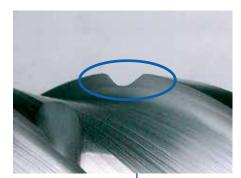

AE-VMSS

Fräsen | Vollhartmetall


Typ 1

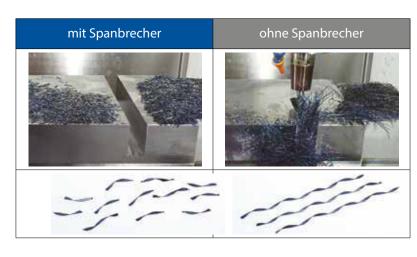
Typ 2

- Erste Wahl in Qualität und Leistung
- Fräser aus Vollhartmetall mit Duarise-Beschichtung
- Für eine Vielzahl von Anwendungen und Werkstoffen
- 4 Schneiden, ungleicher Drall und ungleiche Teilung
- Lange Ausführung mit kurzer Schneide und Halsfreischliff



EDP	ZEFP	DC	LU	LF	APMX	DN	DCON	Preis
8556618	4	6	18	60	9	5,8	6	
8556630	4	6	30	70	9	5,8	6	
8556724	4	8	24	70	12	7,7	8	
8556740	4	8	40	80	12	7,7	8	
8556830	4	10	30	80	15	9,7	10	
8556850	4	10	50	100	15	9,7	10	
8556936	4	12	36	90	18	11,7	12	
8556960	4	12	60	110	18	11,7	12	

Lange Späne führen zu dichten Späneanhäufungen

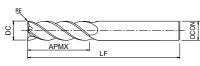


Große Späneanhäufungen können bei langen Bearbeitungen wie Umsäumen, Trochoidalfräsen oder Taschenfräsen problematisch sein.

Bricht Späne in kleine Teile!

Ermöglicht kontinuierliche Bearbeitung

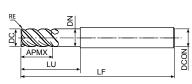
Die durch die Spanbrechergeometrie erzeugten kurzen Späne können leichter mit dem Kühlmittel oder Luftzufuhr abtransportiert werden. Für eine qualitativ hochwertige Oberfläche empfehlen wir den AE-VML (scharfkantig) ohne Spanbrecher.


Werkzeug	AE-VML Ø10×40-N mit Spanbrecher
Material	1.2312(40HRC)
Strategie	Trochoidal
Schnittgeschw.	120m/min 3.800min ⁻¹

Vorschub	1.140mm/min 0,075mm/z
Schnitttiefe	ap=40mm ae=0,5mm
Kühlung	Druckluft
Maschine	vertikales BAZ

Typ 2

DN


DCON

6

ULDR

3

Тур

- Erste Wahl in Qualität und Leistung
- 4 Schneiden, Vollhartmetall mit Duarise-Beschichtung
- Lange Ausführung
- Zum Umsäumen, Bearbeitungstiefen bis 4xD

LF

70

APMX

19

LU

100

80

EDP

8556320

48330202

ZEFP

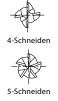
4

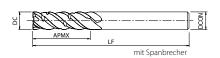
DC

6

20

RE


Preis


	8556336	4	6	0,3	70	19	-	-	6	3	1	
	8556337	4	6	0,5	70	19	-	-	6	3	1	
- 1	8556338	4	6	1	70	19	-	-	6	3	1	
	8556322	4	8	-	80	25	-	-	8	3	1	
- 1	8556339	4	8	0,3	80	25	-	-	8	3	1	
	8556340	4	8	0,5	80	25	-	-	8	3	1	
ı	8556341	4	8	1	80	25	-	-	8	3	1	
ı	8556342	4	8	1,5	80	25	-	-	8	3	1	
ı	8556343	4	8	2	80	25	-	-	8	3	1	
ı	8556324	4	10	-	90	31	-	-	10	3	i	
ı	8556344	4	10	0,3	90	31	-	-	10	3	1	
- 1	8556345	4	10	0,5	90	31	-	-	10	3	i	
ı	8556346	4	10	1	90	31	_	-	10	3	1	
- 1	8556347	4	10	1,5	90	31	-	-	10	3	1	
- 1	8556348	4	10	2	90	31	_	-	10	3	1	
- 1	8556349	4	10	3	90	31	_	_	10	3	1	
- 1	8556326	4	12	-	100	38	_	-	12	3	1	
- 1	8556350	4	12	0,5	100	38	_	_	12	3	1	
- 1	8556351	4	12	1	100	38	_	_	12	3	1	
	8556352	4	12	1,5	100	38	_	_	12	3	1	
- 1	8556353	4	12	2	100	38	_	_	12	3	1	
- 1	8556354	4	12	3	100	38			12	3	1	
- 1	8556374	5	16	- -	125	50			16	3	1	
- 1	8556376	5	20	-	135	62			20	3	1	
И	8556328	4	6	-	70	24	_	_	6	4	1	
1	8556355 8556355			0,3	70	24	-	-			1	
- 1		4	6				-	-	6	4	1	
- 1	8556356	4	6	0,5	70	24	-	-	6		1	
- 1	8556357	4	6	1 -	70	24	-	-	6	4	1	
- 1	8556330	4	8		90	32	-	-	8	•	1	
- 1	8556358	4	8	0,3	90	32	-	-	8	4	1	
- 1	8556359	4	8	0,5	90	32	-	-	8	4	1	
	8556360	4	8	1	90	32	-	-	8	4	1	
- 1	8556361	4	8	1,5	90	32	-	-	8	4		
	8556362	4	8	2	90	32	-	-	8	4	1	
- 1	8556332	4	10	-	100	40	-	-	10	4		
	8556363	4	10	0,3	100	40	-	-	10	4		
	8556364	4	10	0,5	100	40	-	-	10	4	1	
	8556365	4	10	1	100	40	-	-	10	4	1	
	8556366	4	10	1,5	100	40	-	-	10	4	1	
	8556367	4	10	2	100	40	-	-	10	4	1	
	8556368	4	10	3	100	40	-	-	10	4	1	
	8556334	4	12	-	110	48	-	-	12	4	1	
	8556369	4	12	0,5	110	48	-	-	12	4	1	
	8556370	4	12	1	110	48	-	-	12	4	1	
	8556371	4	12	1,5	110	48	-	-	12	4	1	
	8556372	4	12	2	110	48	-	-	12	4	1	
	8556373	4	12	3	110	48	-	-	12	4	1	
	8556378	5	16	-	140	64	-	-	16	4	1	
	8556380	5	20	-	155	80	-	-	20	4	1	
	48330162	4	16	1	150	64	100	15,5	16	2	1	
- 1	40220202		20		150	00	100	10.4	20	2		

Fräsen | Vollhartmetall

- Erste Wahl in Qualität und Leistung
- 4 Schneiden, Vollhartmetall mit Duarise-Beschichtung
- Lange Ausführung
- Zum Umsäumen, Bearbeitungstiefen bis 4xD
- Spanbrecher

EDP	ZEFP	DC	LF	APMX	DCON	Preis
8556321	4	6	70	19	6	
8556329	4	6	70	24	6	
8556323	4	8	80	25	8	
8556331	4	8	90	32	8	
8556325	4	10	90	31	10	
8556333	4	10	100	40	10	
8556327	4	12	100	38	12	
8556335	4	12	110	48	12	
8556375	5	16	125	50	16	
8556379	5	16	140	64	16	
8556377	5	20	135	62	20	
8556381	5	20	155	80	20	

AE-VMFE NEU

Fräsen | Vollhartmetall

5-Schneiden

Die Kantenverrundung ist kein kompletter Radius und dient nur zur Vermeidung von Absätzen bei mehreren Zustellungen.

АРМХ

DCON

- Erste Wahl in Qualität und Leistung
- 4-5 Schneiden, ungleicher Drall und ungleiche Teilung
- Lange Ausführung mit kurzer Schneide und Halsfreischliff
- Zum Umsäumen, Bearbeitungstiefen 2,5xD

EDP

ZEFP

DC

Preis

EDP	ZEFP	DC	NE .	LF	APIVIA	DCON	rieis
8549916	4	6	-	100	15	4	
8549945	4	6	0,5	100	15	4	
8549918	4	8	-	110	20	6	
8549955	4	8	0,5	110	20	6	
8549920	4	10	-	130	25	8	
8549965	4	10	0,5	130	25	8	
8549966	4	10	1	130	25	8	
8549922	4	12	-	150	30	10	
8549975	4	12	0,5	150	30	10	
8549976	4	12	1	150	30	10	
8549924	5	14	-	160	35	12	
8549985	5	14	0,5	160	35	12	
8549986	5	14	1	160	35	12	
8549928	5	18	-	180	45	16	
8549995	5	18	0,5	180	45	16	
8549996	5	18	1	180	45	16	
8549932	5	22	-	200	55	20	
8550005	5	22	0,5	200	55	20	
8550006	5	22	1	200	55	20	

Fräsen | Fräser | Schnittdaten

AE-VMS

ohne Eckenradius / Variante "Rechter Winkel"

Nutenfräsen

Bei Variante "Rechter Winkel" bitte 70% der Schnittgeschwindigkeit und Vorschub wie unten angegeben verwenden.

	niedrigem	Kohlenstoffstahl mit niedrigem Kohlenstoff- gehalt • Gusseisen Werkzeugstahl 42CrMo4		ugstahl	vergüteter Stahl • gehärteter Stahl		Edelstahl		vergüteter Stahl • gehärteter Stahl		Titanlegierungen		Ni-basierende Legierungen	
	St-37 / GG-25	5 ~750N/mm ²		rMo4 ~30HRC	1.2379 / 1.2344 30~45HRC		1.4301 ≤200HB		1.4542		Ti-6AI-4V		Inconel 718	
Schnitt- geschw.	100 (80-120) 90 (70-110) (m/min) (m/min)			80 (60-100) (m/min)		70 (50-80) (m/min)		70 (60-80) (m/min)		60 (50-70) (m/min)		25 (20-30) (m/min)		
Ø	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
3	10.600	930	9.600	690	8.500	510	7.400	470	8.540	430	7.430	410	3.180	160
4	8.000	960	7.200	720	6.400	510	5.600	490	6.410	460	5.570	440	2.390	170
5	6.400	1.020	5.700	800	5.100	610	4.500	560	5.120	490	4.460	470	1.910	180
6	5.300	1.060	4.800	900	4.200	670	3.700	370	4.270	480	3.710	460	1.590	180
8	4.000	910	3.600	720	3.200	640	2.800	370	2.750	450	2.390	430	1.190	200
10	3.200	840	2.900	700	2.500	550	2.200	350	2.200	420	1.910	400	950	180
12	2.700	810	2.400	670	2.100	550	1.900	330	1.830	420	1.590	400	800	180
16	2.000	600	1.800	500	1.600	420	1.200	310	1.140	260	990	250	500	110
20	1.600	480	1.400	390	1.300	340	900	250	920	270	800	260	400	120
25	1.300	390	1.100	310	1.000	260	600	170	730	250	640	240	250	90
Schnitt- tiefe			ap 1D				Dc Dc≤6 6 <dc< td=""><td>0,5D 1D</td><td></td><td></td><td></td><td>ap .25D</td><td></td><td></td></dc<>	0,5D 1D				ap .25D		

Umsäumen

Schnitt-

tiefe

	niedrigem	offstahl mit Kohlenstoff- Gusseisen		er Stahl • eugstahl		ter Stahl • eter Stahl	Edel	Istahl		ter Stahl • eter Stahl	Titanleg	ierungen		ierende rungen
	_	5 ~750N/mm ²		4 / 1.2379 DHRC		/ 1.2344 I5HRC		301 00HB	1.4	1542	Ti-6	AI-4V	Incor	iel 718
Schnitt- geschw.		00-150) min)		00-150) min)		30-120) min)		0-100) min)		70-90) min)		60-80) min)		25-40) min)
Ø	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
3	13.800	1.660	12.700	1.070	10.600	760	8.000	480	9.760	510	8.490	480	4.240	220
4	10.400	1.830	9.600	1.150	8.000	800	6.000	530	7.320	550	6.370	530	3.180	240
5	8.300	1.990	7.600	1.220	6.400	900	4.800	560	5.860	560	5.090	540	2.550	250
6	6.900	2.070	6.400	1.540	5.300	1.060	4.200	640	4.880	580	4.240	550	2.120	250
8	5.200	1.770	4.800	1.540	4.000	1.040	3.200	610	3.200	450	2.790	430	1.590	230
10	4.100	1.640	3.800	1.370	3.200	900	2.500	580	2.560	430	2.230	410	1.270	220
12	3.500	1.400	3.200	1.280	2.700	760	2.100	530	2.140	420	1.860	400	1.060	210
16	2.600	1.250	2.400	1.060	2.000	640	1.400	450	1.370	410	1.190	400	700	210
20	2.100	1.010	1.900	840	1.600	510	1.100	370	1.100	390	950	380	560	200
25	1.700	820	1.500	660	1.300	420	900	310	880	510	760	490	320	190

 ap
 ae

 1,5D
 0,2D

- 1. Die o.g. Schnittdaten gelten als Richtlinie bei einer Auskraglänge von 3xD.
 2. Stabile und präzise Maschinen und Spannvorrichtungen verwenden.
 3. Die Drehzahl wird berechnet durch den Mittelwert der empfohlenen Schnittgeschwindigkeit. Anpassungen sind evtl. notwendig, abhängig von der Spannung des Werkstücks und der Maschine.
 4. Bitte geeignetes Kühlmittel mit rauchhemmenden Eigenschaften verwenden.
 5. Bei Trockenbearbeitung Druckluft zum Entfernen der Späne verwenden.
 6. Bitte wasserlösliches Kühlmittel für Edelstahl verwenden.
 7. Für hochpräzise Bearbeitungen Schnittgeschwindigkeit, Vorschub sowie Schnitttiefe reduzieren.
 8. Wenn Auskraglänge größer als angegeben, Schnittgeschwindigkeit und Vorschub entsprechend anpassen.

Fräsen | Fräser | Schnittdaten

AE-VMS

ohne Eckenradius

Nutenfräsen

Schnitt-	niedrigem I gehalt • C St-37 / GG-25	offstahl mit Kohlenstoff- Gusseisen 5 ~750N/mm2	Werkze 42CrMo4 ~30	er Stahl • eugstahl 4 / 1.2379 HRC	gehärt 1.2379 30~4	eter Stahl • eter Stahl / 1.2344 45HRC	1.4 ≤20	stahl 301 00HB	gehärte 1.4	ter Stahl • eter Stahl 542	Ti-6	ierungen Al-4V	Legie Incor	ierende rungen nel 718 20-30)
geschw.	(m/	min) ´	(m/	min) ´	(m/	min) ´	(m/	min) É	(m/	min)	(m/	min) ´	(m/	min)
Ø	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
3	10.600	790	9.600	590	8.500	410	7.400	380	8.540	430	7.430	410	3.180	160
4	8.000	820	7.200	610	6.400	410	5.600	390	6.410	460	5.570	440	2.390	170
5	6.400	870	5.700	680	5.100	490	4.500	450	5.120	490	4.460	470	1.910	180
6	5.300	1.010	4.800	860	4.200	600	3.700	330	4.270	480	3.710	460	1.590	180
8	4.000	870	3.600	680	3.200	580	2.800	330	2.750	450	2.390	430	1.190	200
10	3.200	800	2.900	660	2.500	500	2.200	320	2.200	420	1.910	400	950	180
12	2.700	770	2.400	640	2.100	490	1.900	300	1.830	420	1.590	400	800	180
16	2.000	570	1.800	480	1.600	370	1.200	290	1.140	260	990	250	500	110
20	1.600	460	1.400	370	1.300	300	900	230	920	270	800	260	400	120
25	1.300	370	1.100	290	1.000	230	600	150	730	250	640	240	250	90
Schnitt- tiefe			1D				Dc Dc≤6 6 <dc< td=""><td>ap 0,5D 1D</td><td></td><td></td><td></td><td>.p 25D</td><td></td><td></td></dc<>	ap 0,5D 1D				. p 25D		

Umsäumen

	niedrigem	offstahl mit Kohlenstoff- Gusseisen		er Stahl • eugstahl		ter Stahl • eter Stahl	Edel	stahl		ter Stahl • eter Stahl	Titanleg	ierungen		ierende rungen
اسانن	•	5 ~750N/mm2		4 / 1.2379 DHRC		/ 1.2344 ISHRC		301 0HB	1.4	542	Ti-6	AI-4V	Incor	nel 718
Schnitt- geschw.		00-150) min)		00-150) min)		80-120) min)		0-100) min)		70-90) min)		50-80) min)		25-40) min)
Ø	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
3	13.800	1.660	12.700	1.070	10.600	760	8.000	480	9.760	510	8.490	480	4.240	220
4	10.400	1.830	9.600	1.150	8.000	800	6.000	530	7.320	550	6.370	530	3.180	240
5	8.300	1.990	7.600	1.220	6.400	900	4.800	560	5.860	560	5.090	540	2.550	250
6	6.900	2.070	6.400	1.540	5.300	1.060	4.200	640	4.880	580	4.240	550	2.120	250
8	5.200	1.770	4.800	1.540	4.000	1.040	3.200	610	3.200	450	2.790	430	1.590	230
10	4.100	1.640	3.800	1.370	3.200	900	2.500	580	2.560	430	2.230	410	1.270	220
12	3.500	1.400	3.200	1.280	2.700	760	2.100	530	2.140	420	1.860	400	1.060	210
16	2.600	1.250	2.400	1.060	2.000	640	1.400	450	1.370	410	1.190	400	700	210
20	2.100	1.010	1.900	840	1.600	510	1.100	370	1.100	390	950	380	560	200
25	1.700	820	1.500	660	1.300	420	900	310	880	510	760	490	320	190

- Die o.g. Schnittdaten gelten als Richtlinie bei einer Auskraglänge von 3xD.
 Stabile und präzise Maschinen und Spannvorrichtungen verwenden.
 Die Drehzahl wird berechnet durch den Mittelwert der empfohlenen Schnittgeschwindigkeit. Anpassungen sind evtl. notwendig, abhängig von der Spannung des Werkstücks und der Maschine.
- 4. Bitte geeignetes Kühlmittel mit rauchhemmenden Eigenschaften verwenden. 5. Bei Trockenbearbeitung Druckluft zum Entfernen der Späne verwenden.

- 6. Bitte wasserlösliches Kühlmittel für Edelstahl verwenden. 7. Für hochpräzise Bearbeitungen Schnittgeschwindigkeit, Vorschub sowie Schnitttiefe reduzieren.
- 8. Wenn Auskraglänge größer als angegeben, Schnittgeschwindigkeit und Vorschub entsprechend anpassen.

Reduzierung der Schnittdaten in Abhängigkeit der Auskraglänge

DC≥Ø6

	Material	niedrigem gehalt •	offstahl mit Kohlenstoff- Gusseisen 5 ~750N/mm2	Werkze 42CrMo	er Stahl • eugstahl 4 / 1.2379 DHRC			1.4	stahl 301 0HB	gehärte	ter Stahl • eter Stahl		ierungen AI-4V	Legie	ierende rungen nel 718
Ø	L/D	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
Um-	4	8	0%	70	0%	7	0%	6	0%	6	0%	5	0%	5	0%
säumen	5	7	0%	60	0%	6	0%	5	0%	5	0%	5	0%	5	0%
Nuten-	4	9	0%	90	0%	8	0%	7	0%	7	0%	6	0%	6	0%
fräsen	5	8	0%	80	0%	7	0%	7	0%	7	0%	6	0%	6	0%

Fräsen | Fräser | Schnittdaten

AE-VMSS

ohne Eckenradius / Variante "Rechter Winkel"

Nutenfräsen

Bei Variante "Rechter Winkel" bitte 70% der Schnittgeschwindigkeit und Vorschub wie unten angegeben

	niedrigem gehalt •	offstahl mit Kohlenstoff- Gusseisen 5 ~750N/mm ²	Werkze 420	er Stahl • eugstahl irMo4 •~30HRC	gehärte 1.2379	ter Stahl • eter Stahl / 1.2344 !SHRC	1.4	Istahl 1301 100HB	gehärte	ter Stahl • eter Stahl	_	ierungen Al-4V	Legie	ierende rungen nel 718
Schnitt- geschw.		30-120) min)		0-110) min)		0-100) min)		50-80) min)		60-80) min)		50-70) 'min)		20-30) min)
Ø	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
1	28.700	570	25.500	460	22.300	360	19.100	340	25.620	320	22.280	300	9.550	120
1,5	19.100	610	17.000	480	14.900	420	12.700	360	16.980	360	14.850	340	6.370	130
2	14.300	630	12.700	510	11.100	440	9.600	380	12.810	360	11.140	350	4.770	140
2,5	11.500	780	10.200	570	8.900	460	7.600	430	10.190	410	8.910	390	3.820	150
3	10.600	930	9.600	690	8.500	510	7.400	470	8.540	430	7.430	410	3.180	160
4	8.000	960	7.200	720	6.400	510	5.600	490	6.410	460	5.570	440	2.390	170
5	6.400	1.020	5.700	800	5.100	610	4.500	560	5.120	490	4.460	470	1.910	180
6	5.300	1.060	4.800	900	4.200	670	3.700	370	4.270	480	3.710	460	1.590	180
8	4.000	910	3.600	720	3.200	640	2.800	370	2.750	450	2.390	430	1.190	200
10	3.200	840	2.900	700	2.500	550	2.200	350	2.200	420	1.910	400	950	180
12	2.700	810	2.400	670	2.100	550	1.900	330	1.830	420	1.590	400	800	180
Schnitt- tiefe			ap 1D				Dc Dc≤6 Dc>6	ap 0,5D 1D				ap ,25D		

Umsäumen

Schnitt-

tiefe

	niedrigem	offstahl mit Kohlenstoff-		er Stahl • eugstahl		ter Stahl • ter Stahl	Ede	Istahl		ter Stahl • eter Stahl	Titanleg	ierungen		ierende rungen
ئىمان:	•	Gusseisen 5 ~750N/mm ²		rMo4 ~30HRC	1.2379 / 30~4	′ 1.2344 5HRC		1301 00HB	1.4	1542	Ti-6	AI-4V	_	nel 718
Schnitt- geschw.		00-150) min)		00-150) min)		80-120) /min)		0-100) min)		70-90) 'min)		50-80) 'min)		25-40) min)
Ø	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
1	38.200	840	28.700	690	25.500	510	22.300	450	29.280	370	25.460	350	12.730	160
1,5	25.500	920	21.200	760	17.000	540	14.900	460	19.520	410	16.980	400	8.490	180
2	19.900	1.430	17.500	840	14.300	630	11.100	470	14.640	440	12.730	420	6.370	190
2,5	15.900	1.590	14.000	900	11.500	690	8.900	480	11.710	480	10.190	460	5.039	210
3	13.800	1.660	12.700	1.070	10.600	760	8.000	480	9.760	510	8.490	480	4.240	220
4	10.400	1.830	9.600	1.150	8.000	800	6.000	530	7.320	550	6.370	530	3.180	240
5	8.300	1.990	7.600	1.220	6.400	900	4.800	560	5.860	560	5.090	540	2.550	250
6	6.900	2.070	6.400	1.540	5.300	1.060	4.200	640	4.880	580	4.240	550	2.120	250
8	5.200	1.770	4.800	1.540	4.000	1.040	3.200	610	3.200	450	2.790	430	1.590	230
10	4.100	1.640	3.800	1.370	3.200	900	2.500	580	2.560	430	2.230	410	1.270	220
12	3.500	1.400	3.200	1.280	2.700	760	2.100	530	2.140	420	1.860	400	1.060	210

ae 0,2D

- 1. Die o.g. Schnittdaten gelten als Richtlinie bei einer Auskraglänge von 3×D.
- 1. Die Og. Schnittdaten geriem als Richtlinie bei einer Auskräglange von SkD.
 2. Stabile und präzise Maschinen und Spannvorrichtungen verwenden.
 3. Die Drehzahl wird berechnet durch den Mittelwert der empfohlenen Schnittgeschwindigkeit. Anpassungen sind evtl. notwendig, abhängig von der Spannung des Werkstücks und der Maschine.
 4. Bitte geeignetes Kühlmittel mit rauchhemmenden Eigenschaften verwenden.
 5. Bei Trockenbearbeitung Druckluft zum Entfernen der Späne verwenden.

ap 1,5D

- 6. Bitte wasserlösliches Kühlmittel für Edelstahl verwenden.
 7. Für hochpräzise Bearbeitungen Schnittgeschwindigkeit, Vorschub sowie Schnitttiefe reduzieren.
 8. Wenn Auskraglänge größer als angegeben, Schnittgeschwindigkeit und Vorschub entsprechend anpassen.

Fräsen | Fräser | Schnittdaten

AE-VMSS

lange Ausführung

Umsäumen

	niedrigem gehalt • 0	offstahl mit Kohlenstoff- Gusseisen 5 ~750N/mm ²	Werkze 42C	er Stahl • eugstahl rMo4 ~30HRC	gehärte 1.2379	ter Stahl • eter Stahl / 1.2344 5HRC	1.4	I stahl 301 00HB	gehärte	ter Stahl • eter Stahl	,	ierungen Al-4V	Legie	ierende rungen nel 718
Schnitt- tiefe		30-120) min)		0-110) min)		50-90) 'min)		10-80) min)		50-70) 'min)		10-60) min)	30 (2 (m/	20-35) min)
Ø	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
6	5.520	1.660	5.120	1.230	3.710	740	2.940	450	3.420	410	2.970	390	1.480	180
8	4.160	1.420	3.840	1.230	2.800	730	2.240	430	2.240	320	1.950	300	1.110	160
10	3.280	1.310	3.040	1.100	2.240	630	1.750	410	1.790	300	1.560	290	890	150
12	2.800	1.120	2.560	1.020	1.890	530	1.470	370	1.500	290	1.300	280	740	150
Schnitt- tiefe						a _{1,5}								

1. Stabile und präzise Maschinen und Spannvorrichtungen verwenden.

- 1. Stabile und plazase Maschinen und Spannvorrichtungen Verwendern.
 2. Die Drehzahl wird berechnet durch den Mittelwert der empfohlenen Schnittgeschwindigkeit. Anpassungen sind evtl. notwendig, abhängig von der Spannung des Werkstücks und der Maschine.
 3. Bitte geeignetes Kühlmittel mit rauchhemmenden Eigenschaften verwenden.
 4. Bei Trockenbearbeitung Druckluft zum Entfernen der Späne verwenden.
 5. Bitte wasserlösliches Kühlmittel für Edelstahl verwenden.
 6. Für hochpräzise Bearbeitungen Schnittgeschwindigkeit, Vorschub sowie Schnitttiefe reduzieren.

Reduzierung der Schnittdaten in Abhängigkeit der Auskraglänge

DC≥Ø6

	Work Material	niedrigem gehalt • 0	offstahl mit Kohlenstoff- Gusseisen 5 ~750N/mm ²	Werkze 42C	er Stahl • eugstahl rMo4 ~30HRC	gehärte 1.2379	ter Stahl • eter Stahl / 1.2344 /5HRC	1.4	stahl 301 IOHB	geĥärte	ter Stahl • eter Stahl 542		ım Alloy Al-4V	Legier	ierende rungen nel 718
Ø	L/D	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
Um-	4	80	0%	7	0%	7	0%	6	0%	60	0%	50	0%	50	0%
säumen	5	70	0%	6	0%	6	0%	5	0%	50	0%	50	0%	50	0%
Clatting	4	90	0%	9	0%	8	0%	70	0%	70	0%	60	0%	60	0%
Slotting	5	80	0%	8	0%	7	0%	7	0%	70	0%	60	0%	60	0%

Fräsen | Fräser | Schnittdaten

AE-VML

Lange Ausführung (gilt auch für Typ 2 mit Spanbrecher)

ae=0,05D • Standard Umsäumen 3D

	niedrigem gehalt • (offstahl mit Kohlenstoff- Gusseisen 5 ~750N/mm ²	legierter 9 Werkzeug 42CrM 1.2379~3	g stahl o4	vergüteter gehärtete 1.2379/1. 30~45H	r Stahl 2344	1.4	stahl 301 IOHB	vergütete gehärtete	r Stahl • er Stahl		ierungen Al-4V	Legier	ierende rungen nel 718
Schnitt- geschw.		40-180) min)		30-170) min)		20-160) min)		00-140) min)		90-130) 'min)		30-120) min)		'0-90) min)
Ø	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
6	8.500	2.480	8.000	2.180	7.400	2.010	6.600	1.660	6.100	1.530	5.600	1.400	4.500	1.080
8	6.400	1.870	6.000	1.630	5.600	1.520	5.000	1.260	4.600	1.160	4.200	1.050	3.400	820
10	5.100	1.730	4.800	1.440	4.500	1.350	4.000	1.120	3.700	1.040	3.300	920	2.700	720
12	4.200	1.430	4.000	1.200	3.700	1.110	3.300	920	3.000	840	2.800	780	2.200	590
16	3.180	1.590	2.990	1.350	2.790	1.260	2.490	1.000	2.290	920	2.090	840	1.690	630
20	2.550	1.280	2.390	1.080	2.230	1.000	1.990	800	1.830	730	1.670	670	1.350	510
Schnitt- tiefe							ap 3D	ae 0,05D						

- 1. Stabile und präzise Maschinen und Spannvorrichtungen verwenden.
- 1. Stabile und plazise Maschiner und Spannvorrichtunger Verwendern.
 2. Die Drehzahl wird berechnet durch den Mittelwert der empfohlenen Schnittgeschwindigkeit. Anpassungen sind evtl. notwendig, abhängig von der Spannung des Werkstücks und der Maschine.
 3. Bitte geeignetes Kühlmittel mit rauchhemmenden Eigenschaften verwenden.
 4. Bei Trockenbearbeitung Druckluft zum Entfernen der Späne verwenden.
 5. Bitte wasserlösliches Kühlmittel für Edelstahl verwenden.
 6. Für hochpräzise Bearbeitungen Schnittgeschwindigkeit, Vorschub sowie Schnitttiefe reduzieren.

ae=0,1D • Hocheffizientes Umsäumen 3D

	niedrigem gehalt • 0	offstahl mit Kohlenstoff- Gusseisen 5 ~750N/mm ²	legierte Werkze 42Cr 1.2379	ugstahl			1.4	Stahl 301 00HB	vergütete gehärtet 1.4		J	ierungen Al-4V
Schnitt- geschw.		220 (200-240) 170 (150-190) (m/min) (m/min)				10-150) min)		10-150) min)		00-140) min)		0-130) min)
Ø	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
6	11.700	3.180	9.000	2.270	7.200	1.810	6.900	1.600	6.400	1.480	5.800	1.340
8	8.800	2.390	6.800	1.710	5.400	1.360	5.200	1.210	4.800	1.120	4.400	1.020
10	7.000	2.240	5.400	1.510	4.300	1.200	4.100	1.070	3.800	990	3.500	910
12	5.800	1.860	4.500	1.260	3.600	1.010	3.500	910	3.200	830	2.900	750
16	4.380	1.970	3.380	1.350	2.690	1.080	2.590	910	2.390	840	2.190	770
20	3.500	1.580	2.710	1.080	2.150	860	2.070	720	1.910	670	1.750	610
Schnitt- tiefe						ap 3D	ae 0,1D					

ae=0.15D • Hocheffizientes Umsäumen 3D

	3D • 110Ci	iciliziciite	.s Oilisau	ilicii JD								
	niedrigem gehalt • 0	offstahl mit Kohlenstoff- Gusseisen 5 ~750N/mm ²	42Cı	er Stahl • ugstahl rMo4 ~30HRC	gehärte	ter Stahl • ter Stahl 1.2344 5HRC	1.4	Istahl 4301 00HB	geĥärte	ter Stahl • ter Stahl		jierungen Al-4V
Schnitt- geschw.		20-160) min)	0-160) 100 (80-120)			0-110) min)		0-100) ′min)		(50-90) (min)		40-80) ′min)
Ø	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
6	7.400	1.860	5.600	1.300	4.800	1.110	4.500	950	4.000	840	3.400	720
8	5.600	1.410	4.200	970	3.600	840	3.400	720	3.000	640	2.600	550
10	4.500	1.350	3.300	860	2.900	750	2.700	650	2.400	580	2.100	510
12	3.700	1.110	2.800	730	2.400	620	2.300	550	2.000	480	1.700	410
16	2.790	1.120	1.990	700	1.790	630	1.690	570	1.490	510	1.290	420
20	2.230	890	1.590	560	1.430	500	1.350	460	1.190	400	1.040	340
Schnitt-						ap 3D	ae 0.15D					

ae≤0,2D • Hocheffizientes Umsäumen 3D

	niedrigem l gehalt • 0	offstahl mit Kohlenstoff- Gusseisen 5 ~750N/mm ²			gehärte 1.2379	ter Stahl • ter Stahl / 1.2344 5HRC	1.4	Istahl 1301 00HB	gehärte	ter Stahl • ster Stahl	,	ierungen Al-4V
Schnitt- geschw.		30-120) min)		0-100) min)		0-90) min)		40-80) 'min)		0-70) min)		20-60) min)
Ø	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
6	5.300	1.230	4.200	890	3.700	780	3.500	670	2.900	560	2.400	460
8	4.000	930	3.200	680	2.800	590	2.600	500	2.200	420	1.800	350
10	3.200	900	2.500	600	2.200	530	2.100	460	1.800	390	1.400	310
12	2.700	760	2.100	500	1.900	460	1.700	370	1.500	330	1.200	260
16	1.990	800	1.590	560	1.390	490	1.290	420	1.090	350	900	270
20	1.590	640	1.270	440	1.110	390	1.040	340	880	290	720	220
Schnitt- tiefe						ap 3D	ae 0,20D					

Fräsen | Fräser | Schnittdaten

AE-VML

Lange Ausführung (gilt auch für Typ 2 mit Spanbrecher)

ae=0,05D • Hocheffizientes Umsäumen 4D

	niedrigem Kohlenstoff-		legierter Stahl • Werkzeugstahl 42CrMo4 1.2379~30HRC		ceugstahl gehärteter S CrMo4 1.2379 / 1.23		Edelstahl 1.4301 ≤200HB		vergüteter Stahl • gehärteter Stahl 1.4542		Titanium Alloy Ti-6Al-4V		Ni-Based Alloy Inconel 718	
Schnitt- geschw.		20-160) min)		10-150) min)		00-140) min)		00-130) min)		30-120) min)	95 (70-110) (m/min)		75 (60-80) (m/min)	
Ø	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
6	7.400	2.010	6.900	1.740	6.400	1.610	6.100	1.420	5.600	1.300	5.000	1.160	4.000	880
8	5.600	1.520	5.200	1.310	4.800	1.210	4.600	1.070	4.200	980	3.800	880	3.000	660
10	4.500	1.440	4.100	1.230	3.800	1.140	3.700	960	3.300	860	3.000	780	2.400	590
12	3.700	1.180	3.500	1.050	3.200	960	3.100	810	2.800	730	2.500	650	2.000	500
16	2.790	1.330	2.590	1.170	2.390	1.080	2.290	860	2.090	780	1.890	710	1.490	520
20	2.230	1.060	2.070	930	1.910	860	1.830	690	1.670	630	1.510	570	1.190	420
Schnitt- tiefe							ap 4D	ae 0,05D						

- 1. Stabile und präzise Maschinen und Spannvorrichtungen verwenden.
 2. Die Drehzahl wird berechnet durch den Mittelwert der empfohlenen Schnittgeschwindigkeit. Anpassungen sind evtl. notwendig, abhängig von der Spannung des Werkstücks und der Maschine.
 3. Bitte geeignetes Kühlmittel mit rauchhemmenden Eigenschaften verwenden.
 4. Bei Trockenbearbeitung Druckluft zum Entfernen der Späne verwenden.
 5. Bitte wasserlösliches Kühlmittel für Edelstahl verwenden.
 6. Für hochpräzise Bearbeitungen Schnittgeschwindigkeit, Vorschub sowie Schnitttiefe reduzieren.

ae=0,1D • Hocheffizientes Umsäumen 4D

	Kohlenstoffstahl mit niedrigem Kohlenstoff- gehalt • Gusseisen			er Stahl • eugstahl		er Stahl • ter Stahl		Istahl	vergütet gehärte	ter Stahl • ter Stahl	Titaniumlegierung	
	-	5 ~750N/mm ²		rMo4 ~30HRC	1.2379 / 30~4	1.2344 5HRC		1301 00HB	1.4	542	Ti-6	AI-4V
Schnitt- geschw.		80-220) 'min)		40-180) min)		10-150) min)		00-140) 'min)		90-130) min)		30-120) ′min)
Ø	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
6	10.600	2.670	8.500	1.970	6.900	1.600	6.600	1.400	6.100	1.290	5.600	1.190
8	8.000	2.020	6.400	1.480	5.200	1.210	5.000	1.060	4.600	980	4.200	890
10	6.400	1.920	5.100	1.330	4.100	1.070	4.000	950	3.700	890	3.300	790
12	5.300	1.590	4.200	1.090	3.500	910	3.300	790	3.000	720	2.800	670
16	3.980	1.690	3.180	1.190	2.590	970	2.490	870	2.290	800	2.090	730
20	3.180	1.350	2.550	960	2.070	780	1.990	700	1.830	640	1.670	580
Schnitt- tiefe						ap 4D	ae 0,1D					

ae=0,15D • Hocheffizientes Umsäumen 4D

	Kohlenstoffstahl mit niedrigem Kohlenstoff- gehalt • Gusseisen St-37 / GG-25 ~750N/mm ²		legierter Stahl • Werkzeugstahl 42CrMo4 1.2379~30HRC		vergüteter Stahl • gehärteter Stahl 1.2379 / 1.2344 30~45HRC		Edelstahl 1.4301 ≤200HB		vergüteter Stahl • gehärteter Stahl 1.4542		Titaniumlegierung Ti-6Al-4V	
Schnitt- geschw.		10-150) /min)		00-140) min)		0-100) 'min)		50-90) 'min)		60-80) min)		40-70) ′min)
Ø	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
6	7.200	1.670	6.100	1.290	4.500	950	4.000	770	3.400	650	2.900	560
8	5.400	1.250	4.600	980	3.400	720	3.000	580	2.600	500	2.200	430
10	4.300	1.200	3.700	890	2.700	650	2.400	530	2.100	460	1.800	400
12	3.600	1.010	3.100	740	2.300	550	2.000	440	1.700	370	1.500	330
16	2.690	1.080	2.290	800	1.690	590	1.490	480	1.290	420	1.090	330
20	2.150	860	1.830	640	1.350	470	1.190	390	1.040	340	880	260
Schnitt- tiefe						ap 4D	ae ≤0,15D					

Fräsen | Fräser | Schnittdaten

AE-VMFE

ohne Eckenradius / Variante "Rechter Winkel"

Umsäumen

	Kohlenstoffstahl mit niedrigem Kohlenstoff- gehalt • Gusseisen St-37 / GG-25 ~750N/mm ²		legierter Stahl • Werkzeugstahl 42CrMo4 1.2379~30HRC		hl gehärteter Stahl 1.2379 / 1.2344		Edelstahl 1.4301 ≤200HB		vergüteter Stahl • gehärteter Stahl 1.4542		Titanlegierungen Ti-6AI-4V		Ni-basierende Legierungen Inconel 718	
Schnitt- geschw.	120 (100-140) (m/min)		120 (100-140) (m/min)		120 (100-140) (m/min)		120 (100-140) (m/min)		115 (100-130) (m/min)		105 (90-120) (m/min)		70 (60-80) (m/min)	
Ø	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)	S (min ⁻¹)	F (mm/min)
6	6.370	2.550	6.370	2.290	6.370	2.040	6.370	1.910	6.100	1.590	5.570	1.340	3.720	740
8	4.780	1.910	4.780	1.720	4.780	1.530	4.780	1.430	4.580	1.190	4.180	1.000	2.790	560
10	3.820	1.530	3.820	1.380	3.820	1.220	3.820	1.150	3.660	950	3.340	800	2.230	490
12	3.180	1.270	3.180	1.140	3.180	1.020	3.180	950	3.050	790	2.790	670	1.860	410
14	2.730	1.090	2.730	980	2.730	870	2.730	820	2.620	680	2.390	570	1.590	480
18	2.120	850	2.120	760	2.120	680	2.120	640	2.030	530	1.860	450	1.240	370
22	1.740	700	1.740	630	1.740	560	1.740	520	1.660	430	1.520	360	1.010	300
Schnitt- tiefe	hnitt-													

Reduzierung der Schnittdaten in Abhängigkeit der Auskraglänge

	Kohlensto	ffstahll mit nie Kohlenstoffge (~750N/m	edrigem Kohle halt • Gusseis m²~30HRC)	enstoffgehalt en	vergütet		irteter Stahl • / 1.2344 5HRC	Edelstahl	Titanlegie		gen • Ni-basierende Legierun			
Bearbeitungs- tiefe	Schnitt- geschw.	Vorschub	Schni	Schnitttiefe Schnitt- geschw. Vorschub Schnitttiefe		tttiefe	Schnitt- geschw.	Vorschub	Schnitttiefe					
L/D	(m/min)	(mm/min)	ар	ae	(m/min)	(mm/min)	ар	ae	(m/min)	(mm/min)	ар	ae		
6	80%	80%	1,7D	0,08D	80%	80%	1,7D	0,08D	80%	80%	1,7D	0,08D		
7	65%	65%	1,6D	0,05D	65%	65%	1,6D	0,05D	65%	65%	1,6D	0,05D		
8	50%	50%	1,5D	0,03D	40%	40%	1,5D	0,03D	30%	30%	1,5D	0,03D		

SCHWEDEN

Niederlassung von OSG SCANDINAVIA Abrahams Gränd 8 295 35 Bromölla Schweden Tel: +46 40 41 22 55 Fax: +46 40 41 32 55 osg@osg-scandinavia.com

OSG SKANDINAVIEN

(Für skandinavische Länder) Langebjergvaenget 16 4000 Roskilde Dänemark Tel: +45 46 75 65 55 Fax: +45 46 75 67 00 osg@osg-scandina via.com

OSG NIEDERLANDE

Bedrijfsweg 5 3481 MG Harmelen Niederlande Tel: +31 348 44 2764 Fax: +31 348 44 2144 info@osg-nl.com

OSG UK

Shelton house, 5 Bentalls Pipps Hill Ind Est, Basildon Essex SS14 3BY Vereinigtes Königreich Tel +44 (0)1268 567660 Fax +44 (0)1268 567661 sales@osg-uk.com

OSG EUROPE LOGISTICS

Zentrale Europa

Avenue Lavoisier 1 B-1300 Z.I. Wavre - Nord Belgien Tel: +32 10 23 05 07 Fax: +32 10 23 05 51 info@osgeurope.com

OSG BELUX

Avenue Lavoisier 1 B-1300 Z.I. Wavre - Nord Belgien Tel: +32 10 23 05 11 Fax: +32 10 23 05 31 info@osg-belgium.com

OSG FRANKREICH

Paris Nord 2 385 rue de la Belle Etoile, 4 allée du Ponant BP 66191 Roissy en France F-95974 Roissy Ch. De Gaule Cedex Frankreich Tel: +33 1 49 90 10 10 Fax: +33 1 49 90 10 15

sales@osg-france.com

OSG COMAHER

Bekolarra 4 E - 01010 Vitoria-Gasteiz Spanien Tel: +34 945 242 400 Fax: +34 945 228 883 osg-comaher@osg-comaher.com

OSG GmbH

Zweigniederlassung Deutschland

Siemensstraße 13 D-61352 Bad Homburg Deutschland Tel: +49 6172 10 62 06 Fax: +49 6172 10 62 13 verkauf@wexo.com

Via Cirenaica n. 52 int. 61/63 I - 10142 Torino Tel: +39 0117705211 Fax: +39 0117071402 info@osg-italia.it

OSG GmbH Zentrale Deutschland

Karl-Ehmann-Str. 25 D - 73037 Göppingen Germany Tel: +49 7161 6064 - 0 Fax: +49 7161 6064 - 444 info@osg-germany.de

OSG GmbH

Zweigniederlassung Deutschland

Siemensstraße 13 D-61352 Bad Homburg Deutschland Tel: +49 6172 10 62 06 Fax: +49 6172 10 62 13 verkauf@wexo.com

OSG EUROPE LOGISTICS

Zentrale Europa

Avenue Lavoisier 1 B-1300 Z.I. Wavre - Nord Belgium Tel: +32 10 23 05 07 Fax: +32 10 23 05 11 info@osgeurope.com

Österreich

Zweigniederlassung Österreich

Messestraße 1 A-6850 Dornbirn Tel.: +49 7161 6064-0 Fax: + 49 7161 6064-444 info@osg-germany.de

Vischer & Bolli AG

Im Schossacher 17 CH-8600 Dübendorf Schweiz Tel.: +41 44 802 15 15 Fax: +41 44 802 15 95 info@vb-tools.com

All rights reserved. © OSG Europe 2022"

Der Verkauf unserer Waren erfolgt ausschließlich zu unseren allgemeinen Geschäftsbedingungen welche Sie jederzeit anfordern können oder online unter http://www.osg-germany.de/AGB.pdf. Einsehen können. Alle Preise sind in Euro je Stück. Hinzu kommt der gesetzliche, am Tag der Bestellung gültige Mehrwertsteuersatz. Die Preise sind freibleibend. In diesem Prospekt genannten Daten und gezeigten Darstellungen dienen nur dem Zweck der Beschreibung der Produkte. Änderungen jeder Art oder Druckfehler von technischen Daten berechtigen nicht zu Ansprüchen. Bildliche Darstellungen sind nicht verbindlich und sind keine Richtlinie über Art oder Eigenschaft. Technische Änderungen, Weiterentwicklungen oder Normänderungen sind vorbehalten. Nachdruck von Text und Bildern, auch auszugsweise, ist ohne unsere Genehmigung nicht gestattet.